Widgets
- Corpus
- Import Documents
- Create Corpus
- The Guardian
- NY Times
- Pubmed
- Twitter
- Wikipedia
- Preprocess Text
- Corpus to Network
- Bag of Words
- Document Embedding
- Similarity Hashing
- Sentiment Analysis
- Tweet Profiler
- Topic Modelling
- LDAvis
- Corpus Viewer
- Score Documents
- Word Cloud
- Concordance
- Document Map
- Word Enrichment
- Duplicate Detection
- Word List
- Extract Keywords
- Annotated Corpus Map
- Ontology
- Semantic Viewer
- Collocations
- Statistics
SNR
Signal-to-Noise Ratio (SNR)
Inputs
- Data: input dataset
Outputs
- Signal-to-noise ratio: signal-to-noise ratio dataset
- SNR = \(\frac{\overline{Spectra_{x, y}}}{\sigma _{x, y}}\)
- Averages: averaged dataset
- Averages = \(\overline{Spectra_{x, y}}\)
- Standard Deviation: standard deviation dataset
- Standard Deviation = \(\sigma _{x, y}\)
The SNR widget computes the SNR, average, or standard deviation of spectra. It can output the results of an entire dataset or by coordinates (x, y).
Use Select axis: x to select an axis that will act as the first element for your coordinate system defined by a numeric meta.
Use Select axis: y to select an axis that will act as the second element for your coordinate system defined by a numeric meta.
In the example above, the result will be:
output = Signal-to-noise ratio(column, row)
SNR = \(\frac{\overline{Spectra_{column, row}}}{\sigma _{column, row}}\)
If you want to select only one axis:
output = Average(x)
Average = \(\overline{Spectra_{column}}\)
or
output = Standard Deviation(x)
Standard Deviation = \(\sigma _{column}\)
If you want the result of the complete data set, you can just leave both as None.