Orange Blog

By: AJDA, Jul 18, 2016

Network Analysis with Orange

Visualizing relations between data instances can tell us a lot about our data. Let’s see how this works in Orange. We have a data set on machine learning and data mining conferences and journals, with the number of shared authors for each publication venue reported. We can estimate similarity between two conferences using the author profile of a conference: two conference would be similar if they attract the same authors. The data set is already 9 years old, but obviously, it’s about the principle.


By: AJDA, Jul 5, 2016

Rehaul of Text Mining Add-On

Google Summer of Code is progressing nicely and some major improvements are already live! Our students have been working hard and today we’re thanking Alexey for his work on Text Mining add-on. Two major tasks before the midterms were to introduce Twitter widget and rehaul Preprocess Text. Twitter widget was designed to be a part of our summer school program and it worked beautifully. We’ve introduced youngsters to the world of data mining through social networks and one of the most exciting things was to see whether we can predict the author from the tweet content.


By: AJDA, Jun 10, 2016

Scripting with Time Variable

It’s always fun to play around with data. And since Orange can, as of a few months ago, read temporal data, we decided to parse some data we had and put it into Orange. TimeVariable is an extended class of continuous variable and it works with properly formated ISO standard datetime (Y-M-D h:m:s). Oftentimes our original data is not in the right format and needs to be edited first, so Orange can read it.


By: AJDA, Apr 25, 2016

Association Rules in Orange

Orange is welcoming back one of its more exciting add-ons: Associate! Association rules can help the user quickly and simply discover the underlying relationships and connections between data instances. Yeah! The add-on currently has two widgets: one for Association Rules and the other for Frequent Itemsets. With Frequent Itemsets we first check frequency of items and itemsets in our transaction matrix. This tell us which items (products) and itemsets are the most frequent in our data, so it would make a lot of sense focusing on these products.


By: AJDA, Apr 1, 2016

Version 3.3.1 - Updates and Features

About a week ago we issued an updated stable release of Orange, version 3.3.1. We’ve introduced some new functionalities and improved a few old ones. Here’s what’s new in this release: New widgets: Distance Matrix for visualizing distance measures in a matrix, Distance Transformation for normalization and inversion of distance matrix, Save Distance Matrix and Distance File for saving and loading distances. Last week we also mentioned a really amazing Silhouette Plot, which helps you visually assess cluster quality.


By: AJDA, Mar 23, 2016

All I See is Silhouette

Silhouette plot is such a nice method for visually assessing cluster quality and the degree of cluster membership that we simply couldn’t wait to get it into Orange3. And now we did. What this visualization displays is the average distance between instances within the cluster and instances in the nearest cluster. For a given data instance, the silhouette close to 1 indicates that the data instance is close to the center of the cluster.


By: BLAZ, Mar 12, 2016

Overfitting and Regularization

A week ago I used Orange to explain the effects of regularization. This was the second lecture in the Data Mining class, the first one was on linear regression. My introduction to the benefits of regularization used a simple data set with a single input attribute and a continuous class. I drew a data set in Orange, and then used Polynomial Regression widget (from Prototypes add-on) to plot the linear fit.


By: AJDA, Mar 3, 2016

Orange at Google Summer of Code 2016

Orange team is extremely excited to be a part of this year’s Google Summer of Code! GSoC is a great opportunity for students around the world to spend their summer contributing to an open-source software, gaining experience and earning money. Accepted students will help us develop Orange (or other chosen OSS project) from May to August. Each student is expected to select and define a project of his/her interest and will be ascribed a mentor to guide him/her through the entire process.

Categories: gsoc gsoc2016 orange3

By: AJDA, Jan 4, 2016

Orange YouTube Tutorials

It’s been a long time coming, but finally we’ve created out our first set of YouTube tutorials. In a series ‘Getting Started with Orange’ we will walk through our software step-by-step. You will learn how to create a workflow, load your data in different formats, visualize and explore the data. These tutorials are meant for complete beginners in both Orange and data mining and come with some handy tricks that will make using Orange very easy.


By: AJDA, Dec 28, 2015

Color it!

Holiday season is upon us and even the Orange team is in a festive mood. This is why we made a Color widget! This fascinating artsy widget will allow you to play with your data set in a new and exciting way. No more dull visualizations and default color schemes! Set your own colors the way YOU want it to! Care for some magical cyan-to-magenta? Or do you prefer a more festive red-to-green?